

primary studies - published RCT

Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis.

Code: PM21518837 Year: 2011 Date: 2011

Author: Keel RA

Study design (if review, criteria of inclusion for studies)

RCT, crossover design with a 9-day washout.

Participants

8 adults with CF

Interventions

patients were randomized to receive intravenous (i.v.) and oral linezolid at 600 mg twice daily for 9 doses in a crossover design with a 9-day washout.

Outcome measures

Plasma samples were collected after the first and ninth doses of each phase. Population pharmacokinetic analyses were performed by nonlinear mixed-effects modeling using a previously described 2-compartment model with time-dependent clearance inhibition. Monte Carlo simulation was performed to assess the activities of the linezolid dosing regimens against 42 contemporary MRSA isolates recovered from CF patients.

Main results

The following pharmacokinetic parameter estimates were observed for the population: absorption rate constant, 1.91 h(-1); clearance, 9.54 liters/h; volume of central compartment, 26.8 liters; volume of peripheral compartment, 17.3 liters; and intercompartmental clearance, 104 liters/h. Linezolid demonstrated nonlinear clearance after 9 doses, which was reduced by a mean of 38.9% (range, 28.8 to 59.9%). Mean bioavailability was 85% (range, 47 to 131%). At steady state, 600 mg given twice daily produced 93.0% and 87.2% probabilities of obtaining the target pharmacodynamic exposure against the MRSA isolates for the i.v. and oral formulations, respectively. Thrice-daily dosing increased the probabilities to 97.0% and 95.6%, respectively. Linezolid pharmacokinetics in these adults with CF were well described by a 2-compartment model with time-dependent clearance inhibition. Standard i.v. and oral dosing regimens should be sufficient to reliably attain pharmacodynamic targets against most MRSA isolates; however, more frequent dosing may be required for isolates with MICs of $\hat{a}_{W} \neq 2 \hat{1}_X g/ml$.

http://dx.doi.org/10.1128/AAC.01797-10

See also

Antimicrobial agents and chemotherapy

Keywords

Bacterial Infections; Infection; pharmacological_intervention; Respiratory Tract Diseases; Respiratory Tract Infections; Anti-Bacterial Agents; Adult; Linezolid; Staphylococcus aureus; Intravenous; Oral; other anti-bacterial agents;